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The Kac ring model is studied rigorously. Considered as an isolated system, 
its description is given in classical and quantum mechanics; the definition 
of  the quan tum states is made precise. The most  interesting results are: 
(1) In  the classical model,  except for pathological cases, equilibrium is 
obtained independently of the initial state in the thermodynamic limit of a 
probabilistic theory; (2) as long as the number  of sites and polarizations is 
finite, the master equat ion does not  apply; (3) the explicit form of the non-  
Markovian terms in the evolution equat ion is obtained;  (4) the memory of 
the initial state disappears from the evolution equation of the diagonal part 
of the density operator  for a large class of nontrivial  scattering operators. 
Finally, several unsolved problems are mentioned. 
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1. INTRODUCTION 

I n  1956 K a c  ~1) s u g g e s t e d  a s i m p l e  m o d e l  f o r  s t u d y i n g  t h e  p r o b l e m  o f  a p h y s i c a l  

s y s t e m  r e l a x i n g  t o w a r d  e q u i l i b r i u m .  

T h e  s t r u c t u r e  a n d  c lass ica l  a n d  q u a n t u m  d e s c r i p t i o n s  o f  th i s  m o d e l  we re  
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studied and completed by Dresden (2~ in 1962 and have been recently analyzed 
in detail by him. ~3) 

The main features of Ref. 3 that have motivated the writing of this paper 
are the following: 

1. In classical mechanics, the probabilistic description is obtained by 
averaging the distribution function. 

2. In the quantum description, the master equation is used in an unusual 
form; it is given in terms of the occupation probability of the eigen- 
states of the one-particle position operator; usually the eigenstates 
considered are those of the unperturbed evolution operator. 

3. The transition probability involved in the master equation is not 
symmetric with respect to the connected states. 

4. The master equation is tentatively used to describe the Kac ring model 
and it is recognized that it does not apply to the magnetic depolariza- 
tion process. 

In order to get a better insight into the problems arising from Dresden's 
paper, we intend to deal with the following points: 

(a) We study the classical description of a generalized Kac model in the 
framework of a probabilistic theory; on the one hand, we prove that 
equilibrium is, in general, not obtained when the number of sites 
allowed to the particles is given; on the other hand, the relaxation 
toward equilibrium is obtained in the thermodynamic limit, inde- 
pendently of the initial state. 

(b) We specify and extend the quantum description of the Kac model, 
with particular emphasis on the definition of the evolution operators 
and the eigenstates. 

(c) We show that, for a given number of sites, the master equation 
cannot be deduced from the evolution equation of the density 
operator; the non-Markovian terms always remain and the off- 
diagonal part of the density operator at the initial time appears in 
the evolution equation of the diagonal part. 

(d) We look at what happens when the number of sites increases to 
infinity. 

In addition, we prove that: 

1. The time average of the observable "polarization" or "color" in 
Dresden's language commutes with the ensemble average in the 
classical description; it is worth noting that this observable specifies 
the macroscopic state of the system. 

2. The system is not ergodic in the classical version. 
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3. In the limit of the number of sites increasing to infinity, the transition 
probability connecting two eigenstates of the unperturbed evolution 
operator depends only on the polarization states. 

To conclude, the intention of this paper is to study the Kac model in 
more detail than has been done until now and to prove that the master 
equation does not apply. 

The results we have obtained are complementary to those of Dresden. 
In fact, his main concern was with the Liouville and master equations as basic 
laws of  evolution; the process of  equilibrium attainment is investigated by 
an averaging method with respect to the scatterer distribution. 

The reader interested in physical realizations of the model is referred to 
the very interesting examples and comments given by Dresden. 

In Section 2, classical and quantum descriptions are specified. The 
Sections 3 and 4 are concerned with the above-mentioned points (a)-(d). 

2. DESCRIPTION OF THE M O D E L  

The model suggested by Kac consists of  N particles located respectively 
at N sites (numbered 1, 2 ..... N)  arranged into a circle. The evolution of the 
system is achieved in a discrete manner; the particle located at site j at time t 
jumps to the adjoining site j + 1 at time t + 1. Furthermore, these particles 
can take on one of  two different intrinsic states (white or black) and the 
evolution of one particle from site j to site j + 1 occurs with or without a 
change of state according to whether or not there is scattering between sites j 
a n d j  + 1. 

Taking into account this model and its extended form given by Dresden, 
in which the particles remain independent, we propose the following general- 
ization: The independent particles can take on one of S intrinsic states and 
the scattering effect is described in terms of probability theory. 

We specify the mathematical structure of  the model and point out its 
general properties and limits of  validity. 

2.1. Classical Description 

We shall use the following notation: E is the set of intrinsic states for one 
panicle; GN is the set of  sites allowed to a particle (the group of  integers 
modulo N);  D is the set of states for one scatterer (a subset of  the set of 
mappings from E to E; this last set will be denoted F);  o ~ = E N is the set of  
intrinsic states for the N-particle system; and ~ = D N is the set of states for 
the N scatterers or configurations. 
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The state of a particle at time t ~ ~d is 

et = ( j t ,  crt) e GN • E (1) 

The evolution operator for one particle U = VUo is the composite of 
the following mappings: (a) the unperturbed evolution operator: 

Uo: (j, c r ) - + ( j +  1, a) (2) 

and (b) the scattering operator: 

v:  U, '7) ~ (J, v,,,) (3) 

where v je  D. 
Therefore, we have by definition 

et+l  = (Jr+l,  ~;t+~) = Uet = ( j ,  + 1, v,,~t) (4) 

The unperturbed evolution being trivial, we introduce an "intermediate 
representation" by defining 

~, = Ud-t(et) = (Jo, ~t) (5) 

and consequently 

r = ( jo ,  vso+t~ (6) 

The evolution of the particle located at site j at time zero is then given 
by the relation 

~t+ 1 = vj+tcrt (7) 

The intermediate description of the N-particle system is defined by the 
mapping 

~t z ~ - >  at+l  = tv(~,D z # (8) 

where tV e ~ is deduced from the configuration V ~ ~ of the scatterers 
through the mapping 

V = (v l ,  v2, . . . ,  VN) ---> tV  = (vt+l  ..... vt+N), t e Z (9) 

We write as V -  ~ the mapping of [~(E)] n into itself, where ~ ( E )  is the 
set of  all subsets of E, defined by 

V -1 = (v;1,  v~ l,..., v ;1)  

It is an easy matter to verify that 

C v ) - i  = t (v  - 1) 

In the same way it can be shown that 

t ( V W )  -~ tVtW, t ~ 7/, V and W ~ F ~ 

t'(tV) = t'+tV, t and t '  ~ 2[, V E F N 

NV = V, V e F Iv 

(10) 

(11) 

(12) 

(13) 

(14) 
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Thus we have proved that F N is a group with operators whose domain 
of operators is G~ and ~ has Gu as a group of operators. 

Finally, a probabilistic description of the evolution will be defined by a 
given law of probability o n  the set ~ x # at the initial time; the law of  
probability at time t + 1 will be obtained from that at time t through the 
use of the evolution mapping 

f~: (V,a)  e ~  x oz -+ (V ', tYa) e ~  x # (15) 

where V' would be different from V if the interaction between the particles 
and the scatterers modified the state of the latter. 

In the following, we shall suppose the stability of the scatterers by 
writing 

V = V '  

As far as the law of initial probability is concerned, we shall formulate a 
hypothesis of independence: 

P0(V, a) = P(V)p0(a) (16) 

We shall write pc(n) for the probability of the state a at time t. 

2.2. Quantum Descr ipt ion 

We take the space of intrinsic states as C s. The set of sites is still the 
group GN of the integers modulo N. 

In the Schr6dinger representation, the instantaneous state of  a particle 
is a mapping ~b from GN into CS; all the mappings from GN into C s are square- 
integrable for the normalized Haar  measure on GN. 

In the following we shall take the Hilbert space of the wave functions 
~e2(GN, C s) to be the Hilbert space ~ = [CSff with the canonical Hermitian 
product 

<r = (I /N) ~ (r s 
J~Orr 

where r e C s is the j th  component of ~b. 
As in the case of the classical description, the evolution operator is 

obtained as the product of the unperturbed evolution operator U0 with 
the scattering operator V. 

2.2.1. Unperturbed Evolution Operator. We shall start by defining the 
position operator X for one particle by 

Xr = eZ'~kmr (17) 

It  is clear that this operator is unitary and that the set of its eigenvalues is 
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nothing but the roots of order N of unity; the latter is canonically isomorphic 
to GN. 

In short, we shall say that the wave function ~b describes a particle located 
at site j ~ GN if 

Xr = 8j~ e2"~/Nr (18) 

The eigenvectors XJ~ (a E C s) associated with the posi t ionj  s Gn are such that 

x ja (k )  = ~ 8je (19) 

(the multiplicity of each eigenvalue is S). 
The evolution operator must therefore be such that 

U o x .  = xs+ ~,~ (20) 

By analyzing a wave function ~b ~ oCf with respect to the basis composed 
of the eigenvectors of X, we verify, as expected, that 

Uo~b(k) = ~b(k - 1) (21) 

It is clear that Uo is a unitary operator and that its eigenvalues are 

e - 2 i ~ m ,  n = 1, 2, . . . ,  N (22) 

The eigenvectors v~o (a ~ C s) associated with the eigenvalue e-~,~.m are 
such that 

v,~(k)  = e2'~'~mv,~(k - 1) (23) 

We shall put 

v,~r = (e2~'~fNa, er  . . . . .  a) (24) 

(the multiplicity of each eigenvalue is S). 
If the S polarizations are chosen to be an orthonormalized basis of C s, 

the vectors v,r make an orthonormalized basis of ~ .  

2.2.2. Scattering Operator V and Evolution Operator U. The quantum 
transposition of the model used in the classical description of the scattering 
system is obtained by putting 

VXjo = X~.vj-l(,) (25) 

where vj is a linear operator of C s, for every j ~ Gu. 
Clearly, there must be at least one scatterer such that the associated 

scattering operator is different from a scalar operator of modulus one. 
Otherwise any eigenstate of the unperturbed system also would be an eigen- 
state of  the perturbed system. 

Moreover, since the evolution operator U = VUo is unitary, Visa unitary 
operator of 9f' and consequently v s is a unitary operator of  C s. 
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Finally, for any wave function ~b e ~ the definition (25) leads to 

Vr = vk-z[r (26) 

and by introducing, for all t e 71, the mapping 

V = @z .... , vN) e [A~ N -+ ' V  = @ 1 - , . . . ,  vN-t)  (27) 

(the subscripts are to be counted modulo N), we establish the relation: 

Uo t V = tVUo t (28) 

which will be used in Section 4. 
The operators vj are to be defined in terms of the properties of the 

scatterers by noticing that the matrix element 

(~Iv/> 

represents the probability amplitude for the transition from the state of 
polarization or' to that of polarization ~ when the particle state is affected by 
a scatterer located between sites j and j + 1 ; in fact, we have 

UXjo = Xy+ z,,,~,~) (29) 

On the other hand, note that the intermediate description, eliminating 
the trivial evolution U0 operator, is obtained from the Schrbdinger wave 
functions by putting 

r = U o ' ~  s) (30) 

The evolution operator between times t and t + 1 is then 

U[ z) = Uo( t  + z) VU~o t + l) (31) 

and we easily verify that 

U?)C(k) = vk+~[C(k)] for any r e ~ (32) 

In particular, we have 

r  z(k) = U?)r = v~+,[r (33) 

This is the quantum translation of the relation (7). 
The statistical description of the system will be based on the use of the 

density operator pt, the evolution equation of which is, in the Schr6dinger 
representation, 

Pt+l = UptU* (34) 
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3. CLASSICAL DESCRIPTION OF THE EVOLUTION 

3.1. Law of Probability 

The probabilistic model introduced in Section 2.1 allows us to compute 
the probability pt(a) of  the N-particle system to be found in intrinsic state 
at time t. 

This computation is given in Appendix A. The result is 

p,(o) = ~ P(V)po(V -1 ~V - i  ... ~'-~'V -1(~)) (35) 
Ve.@ 

In particular for the mechanical evolution the laws of  probability P and 

P0 are 

P(V) = 3v,v,, p0(a) = 3~,o, 

where V '  and n' are, respectively, some fixed elements of  ~ and g. 
Then we have 

pt (a)  = 1 if ~' ~ (t-1 V, ... V ' ) - l ( a )  

= 0 otherwise (36) 

This result agrees with the relation (8), according to which 

at = ' - ~ V '  ... V ' (a ' )  (37) 

In particular, if V is the unit mapping of g,  we have at = a ' ;  the intrinsic 
state of  the particles does not change. 

3.2. Study of a Simple Model  

The preceding results are used to analyze the following model: Let E be 
the group of  the roots of  order S of unity, and D be the translation group of 
E (isomorphic to E). 

For  any element E ~ E the associated translation v~ will be assimilated to 
this element by the definition 

v~(a) = Ea for any a ~ E 

The model studied by Dresden is contained in the particular case S = 2. 
The law of  probability (35) is then written 

= 1 ) p 0 (  . . .  ( 3 8 )  

From NE = C, it is clear thatpt(n) is a periodic function whose period is a 
submultiple of  N S .  

Consequently, and as expected, the irreversibility phenomenon does not 
occur in the preceding description for any finite N. 
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In order to understand where the irreversible evolution comes from, let 
us study the mean value of the observable 

A(a) = ~ a, (39) 
iEG N 

We have 

<A)t = ~ A(a)pt(a) = ~ <e,r ... , ,+,_~)(a,)o (40) 
a e ~  i~G N 

where 

<, , , ,+~  ..- , ,+ ,>  = ~ ( , ,  ... , ,+ , )e (O 

Finally, suppose the random variables E~ to be independent with the same 
law of probability; then we get 

f o r ( k -  1 ) N +  1 <<. t <~ kN ,  k = 1,2 ..... S ; a n d  

(A) t+~s = (A)~ 

where 

(41) 

S 

p(l)  being the probability of the scattering state e 2~"~/s. 
It is clear that 

I(,~)1 .< 1, k = 1, 2 . . . ,  S (42) 

Furthermore, we observe that <A)t = 0 for every t as soon as (A)o = 0; 
then the system is in statistical equilibrium. When (A)o # 0 the system does 
not return to its equilibrium state for all finite N. 

Now, what happens as far as the evolution is concerned when N goes to 
infinity with (A)o r 0 ? 

For  any fixed t, as soon as N is greater than t, (41) leads to 

( A N ) ,  = ( , 7 ( A N ) o  

where the subscript N on A reminds us that A~ describes an N-site system. 
If  we suppose that the thermodynamic limit exists at the initial time, 

that is, 

1 
~r ~ (AN)o = a 
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then the thermodynamic limit exists for any time and we have 

1 
at = lim _~ (AN)t = @)ta 

N--*. oO 

Finally, in the thermodynamic limit, as soon as I< >1 < 1 the observable 
at decreases exponentially to zero when t goes to infinity; the preceding con- 
dition means that the scatterers are efficient. 

A detailed study of this problem has been given recently by Coopersmith 
and Mandeville, (~) using Dresden's formalism. These papers give an analysis 
of the subsystem relaxation and a description of the fluctuations. 

On the other hand, a simple computation given in Appendix B shows 
that taking the time average and taking the mean value with respect to the 
initial state are two commuting operations when applied to the observable A 
defined by (39). 

The studied system displays all the main features of a good physical 
system but in spite of this it is not ergodic, as shown in Appendix C, for 
N >/ 3 and for every S. 

4. Q U A N T U M  D E S C R I P T I O N  OF THE E V O L U T I O N  

4.1. Nota t ions  

The evolution is defined through the density operator p, whose evolution 
equation is now analyzed. 

Let ~r be the Hilbert algebra of the operators on 3r ~ = (C~) N with the 
Hermitian product 

(A]B) = Tr  A ' B ,  A and B e ~ '  (43) 

Let us introduce the complementary orthogonal projectors ~ and 
~ '  = or - ~ defined by 

<n.Tl~(A)n'd> = <nolAno > 3... 3~a,, A e d (44) 

where no stands for the eigenstate v.a of the unperturbed evolution operator 
Uo. [ J  is such that d ( A )  = A for every A ezr  

Let q/o, q/, and ~V" be the unperturbed and perturbed evolution operators 
and the scattering operator associated, respectively, to the operators Uo, U, 
and V through definitions similar to 

qlo(A) = UoA Uo* for all A e ~r (45) 

It is clear that the following properties are true: 

~'o, ~,  and ~ are unitary operators 

~ q / 0  = q / 0 ~  - ~ (46) 

[~(A)]* = ~(A*) 
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4.2. Decomposit ion of  the Evolution Equation 

Let us consider d as the direct sum of the Hilbert subspaces ~ ( d )  and 
~ ' ( d ) .  

The density operator is decomposed in the form 

pt = Rt + St, where Rt = N(pt), St = N'(Pt) (47) 

In the matrix notation, the evolution equation (34) can be written 

Rt+z = %o(R3 + %1(S,), S,+I = %o(R3 + ~I~(S,) (48) 

where: 

and 

q/oo = ~ = ~Y/'~, ~ol = ~ag~ ,  = ~ i ~ ,  
(49) 

q/lO = ~ ' q / ~  = ~ ' ~ q / ,  q/ii = ~ ' q / ~ '  

Let us remark that ~ = (q/*)lo. 
Then, it is an easy matter to verify that, for all t /> 0, 

t 

- %o(R,)  = %l h(So) + % l q e l ;  (50) 
~ = 1  

t 

St+I - ~iz(St) = ~lo~o(Ro) + ~ ~io~oZ~oz(St- , )  (51) 

It follows that the diagonal matrix elements of the density operator are 
given by the equation 

p t 2 o, , ( t  + 1) = ~ [<n-I Sn a >1 O,,o,(t) + <nalqloi~ 
~'cx" 

t 

+ ~ <n~lagolqAl~lqAlo(Rt-O mr> 
' 1 :=1  

where we have put 

(52) 

where ~ stands for na. 

<~]qiol~'l~ lq/lo(R)~ ) = ~ P(~' ;  r)p~, (54) 

This equation contains non-Markovian terms, which we are going to 
study in detail. 

A tedious calculation, given in Appendix D, shows that 

p~(t) = <n~lptmr> (53) 
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The transition probabilities are defined as follows: 

P(~'; 0 = ~ (-1) ~+~ ~ e,..,~(% ~') (55) 
k = l  i l  + . , .  +i/~ ='~ + l 

(the fi are positive integers different from zero), with 

e,~...,~(a, a') = ~ P,~(a, ,~)P,2(aa, as)'-" P,~(a~_~, d )  for k />  2 
~l..-l~k - i 

= P,~(., ~') for k = 

(56) 

P,(~, ~')= [<~lu'~'>l == I<~lW ~v... (,--vd>;= (57) 

The last form is obtained by using (28). 
Taking into account the definitions (24) and (27), we obtain the explicit 

form of Pz as 

] 1 N ( [ 2 i r r ' ' - N k - ' - - ~  ~,exp[--ff 1} 2 Pz(o:, a') = y (n - n)k (a]vkv~_~ ... v~_,+la') (58) 

In the particular case where vk is independent of k, we find 

P,(% ~') = 3,,, l<alv'a'>l ~ (59) 

where again a stands for na. 
Finally, Eq. (52) becomes, for all t /> 0, 

t 

p~(t + 1) = ~ E P ( a a ' ;  ~')p~,(t - ~-) + E P(a;  e'~"; t)S~,~,(O) (60) 

where the transition probability P(~ . ' ;  ~-) is defined by (55) and (56); 
P(c~; . 'a";  t) is given explicitly in Appendix D. 

For the unperturbed system (U = U0) it is easily verified that 

p~(t + 1) = p~(t) 

Remarks. The evolution equation (34) written in the form 

P t - 1  = U * p t U  

allows us to show that the diagonal part of the density operator is given, for 
all t ~< O, by the equation 

[tl 

Rt-1 = Ygoo(Rt) + ~ ~ o ~ I ; l ~ l o ( R t + O  + ~olq/~(So) (61) 
z = l  

where the ~ i  are defined by (49) for the operation U-  ~ = U* instead of U. 
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Then we can deduce that the diagonal matrix elements of the density operator 
satisfy 

[tl 

p~(t - -  1) = ~ ~__P(aa'; 7)p~.(t + 7) + ~ _ P ( a ; a ' a " ;  [tDS~,~,,(0 ) (62) 
1;=0  6' 

where it is easy to verify that 

P(aa ' ;  7) = e (a ' a ;  7) 
I t [ + l  

P(~;~ '~" ;  I t l ) =  ~ ( - 1 )  T M  

k = l  

If  we put, for 

P(a~'  ; t)  

we obtain 

P~(a"a' ; a'a")P,2...i~(a" , a) 
/1 + , . .  + ( k =  [ t [+  1 

all t ~< 0, 

= P(~'- ;  Itl), P(=;  ='a"-, t) = P(a;  a'~"., Itl) 

(63) 

(64) 

pr - l) = ~ ~ P(aa ' ;  7)p=,(t - r) + ~ P(a; a'a"; t)S~,,,,(O) (65) 
"~ = 0 a t ~'Ot" 

In the term P(~; ~'a"; t) ,  ~ stands for (c~, a). 
We can then observe that the transition from the evolution equation for 

t /> 0 to that corresponding to t ~< 0 is obtained through the rule 

P(~, ~'; ~) -+ P(~'~; - 7 )  

P(~la2; a3~,; t) -+ P(a4=a ; a2al ; - t)  

4.3. Propert ies of  the Transi t ion Probabi l i t ies 

First of all, let us remark that the transition probability Pl(a,  a') which 
would occur in a hypothetical master equation is symmetric with respect to 
the connected states if the perturbation theory is taken up to the second order. 
In fact, if we write 

V = I + W  

where W is to be considered as a perturbation, the unitarity of V implying 

W + W *  = - W W *  

we have, with evident notation 

I U=,l 2 = I v=,l  ~ = I w=,l  2 = I w~,~l ~ for = r ~' 

by neglecting the terms of order greater than two. 
Now, the definition (55) of the transition probability can be rewritten in a 
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more compact form by denoting Pt the real positive-definite matrix onto the 
set of the eigenstates of U0, defined by (57). 

For any set (il .... , i~) of positive integers different from zero, we put 

P~I...** = PqP~ "'" P*~ (66) 

and (52) becomes 

3 + 1  

P(~-) = ~. ( - 1 )  T M  ~ P,I...** (67) 
k=l ~i +...+~=z+ 1 

In Appendix E it is shown that the generating function of the transition 
matrices P(z), 

F(z) = ~ P(z)z" (68) 
'~=0 

is related to the generating function of the matrices P~, 

oo 

f (z)  = y P ~  (69) 
z-~-i 

through the relation 

zF(z) = f(z)[I  + f (z)] - I  (70) 

The transition matrix P( , )  appears as the coefficient of z ~+ 1 in f (z)[I  + 
f(z)]-1; so the process will be Markovian iff 

f (z)[I  +/(z)]  -1 = Lz (71) 

where ;~, which is nothing but P(0) = P1, is a matrix with a norm less than 
one. 

This condition, equivalent to 

f (z)  = ,~(I - ,kz)- lz (72) 

leads to the very restrictive relation 

Pz = ;~z = pll for any l = 1, 2,... (73) 

Then the lemma proved in Appendix F shows that the process is a 
Markovian one if and only if the evolution operation U commutes with the 
unperturbed evolution operator Uo or, in other words, the scattering operator 
V commutes with Uo. 

This property is in disagreement with the hypothesis following (25), so 
we must conclude that the evolution process cannot be Markovian; it is 
therefore incorrect to apply the master equation to describe the Kac ring 
model. 
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On the other hand, it is shown in Appendix G that the condition eliminat- 
ing the memory of the off-diagonal part of the density operator at time zero 
in (60) is much less restrictive than the preceding one; there exist some evolu- 
tion operators U that do not commute with Uo and such that P (a; ~'~"; t) = 0 
For instance, if the number of polarizations S equals two, the scattering 
operator V defined by (25) with 

(0 
v k =  where I kw l = 1  (74) 

~k 

in the basis comprised of the eigenstates of polarization in C 2, leads toffs = 0 
[see definition (G.1)]. 

Finally, Theorem 1 proved in Appendix H shows that the limit, when N 
goes to infinity, of the transition probability P~(~, ~') defined by (58) depends 
only on the polarizations a and a' of the states ~ and ~' insofar as the sequence 

has a limit when N goes to infinity. 
Theorem 2 of Appendix H improves the preceding result by showing 

that it is valid for the case where the limit of the site configuration is taken 
as follows: The abscissas (in increasing order) (Yk(N))k=l ..... N of the sites 
allowed to the N particles are such that the family of sequences indexed 
by N: [xk(N) = y k ( N ) / y N ( N ) ] ~ =  1 ..... ~,  tends asymptotically, when N goes to 
infinity, toward a sequence equally distributed on the interval [0, 1]. 

5. C O N C L U S I O N  

We shall not enumerate the main results obtained in this work; this has 
been done in the introduction. Here we emphasize the most important 
limitations of the considered models and point out what points it would be 
interesting to study. 

First of all, the classical and quantum models are only concerned with 
independent-particle systems. It would be certainly fruitful to remove this 
hypothesis as long as the new models would admit rigorous treatment with- 
out appealing to perturbation theory, which is, in general, hardly justified. 

In the classical description, we have only considered a cyclic model of 
polarization and to study the return toward equilibrium in the thermodynamic 
limit we have supposed that the scatterers were independent and described by 
the same probability law. Nevertheless, we do not think these restrictions to 
be essential in proving the general properties of the studied system. 

What we have done in terms of a quantum description is clearly incom- 
plete. In particular, it would be essential to describe what happens in the 
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limit where the number of sites goes to infinity; but, according to the dis- 
cussion at the end of Section 4.3 and the relation (73), it seems reasonable to 
think that the system will not become Markovian in this limit. Nevertheless, 
this very important problem remains open. 

Finally, we have proved that the memory of the off-diagonal part 
contained in the density operator at the initial time is eliminated from the 
evolution equation of the diagonal part even for some nontrivial scattering 
operators; it would be very interesting to define the class of scattering opera- 
tors that ensure the elimination of the memory effect; moreover, a physical 
understanding of their properties would be certainly fruitful. 

To concIude, we remark that the Kac ring modeI, although very fas- 
cinating in its simplicity and its mathematical tractability, is not the best one 
to be studied in the framework of the master equation. In fact, we are tempted 
to conjecture that the master equation applies, in the case of an isolated 
system, only when a continuous spectrum of eigenstates is obtained for the 
unperturbed evolution operator, in the thermodynamic limit. Thus, we expect 
the master equation to be valid for describing the Kac ring model in the limit 
of a continuous spectrum of polarizations and not only in the case where S 
goes to infinity. 

This model was already suggested by Dresden as a "more realistic 
picture which corresponds to balls capable of a continuum color." But its 
study remains open. 

A P P E N D I X  A. T H E  P R O B A B I L I T Y  pt(a) 

According to the probabilistic model given at the end of Section 2.1, 
we are able to determine pt(a) as follows. 

From the definition, the probability PI(V, ~) induced onto the set 
x g, at time one, by the mapping f0 is 

?I(V, *) = P0(V, V-1 , )  = ?(V)po(V-1o) 

and the probability of state a at time one is 

and 

(A.I) 

= Z 
V~.~ 

Now, through the mapping f l ,  we have successively 

?~(V, o) = P~(V, ~V-I~) = :'o(V, V-iW-~o) 

(A_2) 

(A.3) 

= (i.4) 
Ye.~ 

We thus see that (35) is true at times one and two; an easy recursion 
procedure proves (35). 
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A P P E N D I X  B. M E A N  VALUES OF OBSERVABLE A 
DEFINED BY (39) 

In the framework of the model used in Section 3.2, the ith component 
of the state at time t (1 <% t <% NS) can be written 

a , ( t ) = q + t _ l . . . e ~ + l e e q ,  1 + ( k -  1)N<% t <%kN, k =  1 ..... S 
(B.1) 

where a~ is the ith component of the initial state. 
Remembering the counting modulo N of indices, (B. 1) becomes 

o,(t) = tz~-%t~,.z ... ~+t -x-c~- l )~ ,  (B.2) 

with/~ = I--[~= 1 ~. 
The time average of  ~(t)  is 

1 NS 
~ , = ~ c r , ( t ) = 0  if / * #  1 

t = l  
zr (B.3) 

= ~ ~, "'" Ei+t-z if t* = 1 
t = l  

On the other hand, since the ensemble average of  oh(t) is 

(a,(t)) = tzg-*e, ... ",+t-l-(k-,)N(a,),  1 + (k - 1)N ~< t ~< kN (B.4) 

its time average is 

( a ~ ) = O  if ~ r  1 

0.5) 
- -  N E~ ,.. ~ i + t - I  I z = 

t = l  

Thus we verify that (B.5) is the ensemble average of (B.3): 

(a,> = (V,) (B.6) 

The preceding result is extended by linearity to prove that it stands for 
observable A. 

A P P E N D I X  C. N O N E R G O D I C I T Y  OF THE SYSTEM 
W H E N  N _> 3 

A definition <B) of ergodicity is that the entity 

NS 

(1INS) ~ f(a,) (C.1) 
t = l  

where ~t = t - i t  " ' "  1 s 1 6 3  must be independent of  a ~ g for all complex-valued 

functions f 
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Since a basis of functions over g is given by the set {3g}g~, with 

3~: ~ ~ ( ~ )  = 1 if ~ =  
(C.2) 

= 0  if ~ # t 7  

the statement (C. 1) is equivalent to requiring that 

NS 

(1INS) ~, 3g(~t) (C.3) 
t = l  

is independent of a for all g e #. 
From the definition, 

1 Ns 1 

where 1{'"}1 stands for the number of elements of  the set {...}. 
For a fixed g e g let us define 

~( . )  = { t : . ,  = ~, 1 < t < NS} (C.5) 

When a # a', it is not hard to show that 

A(a) n Z( . ' )  = g (C.6) 

Suppose ]A(~)[ independent of  a;  then 

[ 0~(7~# A(a)l = NSIA(~)[<~ NS (C.7) 

s ince  

~.J A(a) r {1, 2,..., NS} 
a e 8  

Therefore, if the system is to be ergodic, we must have 

IA(~)I < SN 1-s ((2.8) 

But, for all S and as soon as N 1> 3, it is easy to verify that 

Ih(~)l < 1 

The conclusion is obtained by remarking that for all ~ there exists at least 
one dement  t7 such that A(a) = ~ .  

A P P E N D I X  D. N O N - M A R K O V I A N  T E R M S  

We want to get an explicit expression for the terms of the form 

N, = ( ~ l ~ o ~ q ~ % o ( R ) ~ )  = ( ~ I ( ~ ' ) ~ ( R ) ~ )  (D.1) 
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where the right-hand expression is obtained from definitions (49) and 
~(R) = R. 

Let A be an operator on the Hilbert space J/d; the operator s/associated 
with the operator A on o~ and defined by ~r = ATA* for all T e  ~r 
admits, with respect to the basis {la> (a'l} generated by the basis of the eigen- 
vectors of Uo in ~ ,  the matrix elements 

A(cq3; y3) = <-]A~,> <BIA~> 

Then we have 

(alsC(T)~ '> = ~ A(,~'; ,~"o~")<o:"lTo,"> (D.2) 
off" c~m 

and by iteration 

< ~ 1 ~ ' ~ '  ... ~ '~_~ '~r  
m - i  

= Ak(~,~_xay~_l; c%%.~)1--'[ (1 - 8%%)(c%IT~j=> (D.3) 
k=l k=l 

with cqo -- c~ and %0 = a'. 

In particular, we get 

~+i 

N, = l--I U(ai~_laj~_~; a,k%~) ~I (i - 8%%) ~0q,+la-j,+lpgiz+l 
/ c = l  k = l  

(D.4) 

where c% = %0 = a. 
In the preceding formulas, the sum over the repeated indices is implied. 
The last result takes the form 

with 

= (D .5 )  

,+1 ~z I P ( ~ ' ;  z) = I--[ U(~'~-1c%-1; ~,~c%) (1 - 8%%) 
k=l k=l 

and % + i = % + i = ~'- 

Let us introduce (i) the sets 50 = J -  x ~-- where Y is the eigenvector set 
of Uo, 2x = {(~, ~ ) : ,  ~ 3-} is the diagonal of 50, and T = {1, 2,..., ~-}; and (ii) 
the mappings 

X: ~ = (71 "'" 7 0  ~ ~9~ v--> X(7) = I - [  [1 - X~(Tk)] 
k e T  

which is the characteristic function of the subset Nr of S p~', where A is the 
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complement of A in if ;  X~ is the characteristic function of A; and 

z + l  

O: ~, ~ s.~ ~ O(r) = 1--I u (n_~;  n )  
k=l  

with Yo = (a, a) and y~+~ = (a', a'). 
Thus we get the following expression for _P(aa'; T) : 

e(~ ' ;  ,) = ~ O(v)x(v) 
},~5oT 

in which it is clear that 

(D.6) 

x(~') = 2 ( -1)~  ~ 1-I X~(~'j)= ~ ( - 1 )  ~ ~ xa~(~'s) (D.7) 
k=O SeT 1~S k=O SeT 

ISl=/c I S l = k  

where ~'s is the restriction of 7 to the subset S of T and XA~ is the characteristic 
function of A s, with Xa~(ys) = 1 when S = ~ .  

Now, putting 

S = { m l  .... ,m~} with 1 ~<ml < m 2 . . . < m e  ~< ~" 

where 

Pm I - mj - l (amj - x, am1) = 

m~, - 1 

~, 1-I v(y,, v,+l) 
7E~'~J l = mt _ 1 

with ymj = (amj, amj) for all m~ e S and 
k+l 

$i = Imp-l, mj[, ~ = L..J Sj 
. / = 1  

k + l  

XAs('yS) ~ [ .7(~)-~ ~ e m t _ m j _ l ( a m j _ l ,  (Zm,) 
s 

we have 

h:+l ml- I 

0(9') = 1--I 1--I U(y,; Y,+I) (D.8) 
J = l  l f m t -  1 

with m o =  0 and m~+ 1 - -  ~" -{- 1. 
Inserting (D.7) into formula (D.6), we get 

P(aa'; ~) = ~ ( - 1 )  ~ 2 2 Xa~(~'s) 2 _  0(y) (D.9) 
k = O  S e T  vse5 es ~eSos 

Wl=/c 

where y is defined through its restrictions Ys and % 
Taking account of (D.8), we obtain 
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Then, the expression (D.9) for P(o~a'; r) becomes 

1 21 

where 
h : + l  

+ ) :  1-I 
(~mx..-o'mk)~,,~'h: . /= 1 

Finally, the mapping 

with 

(ml,..., m~) e T ~ ~ (iz ,..., i~+ 1) 

where iz = rnz - m~_ 1 is a nonzero positive integer and ~_-+~ i~ = r + 1 
according to (D.8), allows us to write: 

"~+1 

P(aa ' ; r )=  ~ ( - 1 )  ~+1 ~ Pw..~(a,a') 
k = 1 ~,l '*'tk 

k 

Pi>&(a, a') = ~ ~ P~,(a~_ 1, a3 if k >/ 2 
( ~ v " ~ -  ~)~3-~-~ z = 1 ( D .  12)  

= P~l(ce, a') if k = 1 

where a0 = a, % = a', and 

P,(a, a') = ](a I U~a')l 2 (9.13) 

Let us remark that the Pz(a, a') are just the diagonal matrix elements of 
the operator q/Z with respect to the basis {la)(a']}. 

On the other hand, the term proportional to So in (52) is of the form 

M, = (alq/olqgil(S)@ = (a](qg~')'+ 1(S)@ (D.14) 

with ~ ' (S )  = S, or 

t + l  

Mt = ~ U(a,~_ia,~_,; %aj~)(1 - 8%%)S%% (D.15) 
k = l  

with % = ajo = a and S~,. = (alSa') (the sum over the repeated indices is 
implied). 

Therefore, Mt can be written 

Mt = ~ P(a; a'a"; t)S,e,~, (D.16) 
O:eO~ " 

(D.11) 

P(aa ' ;  r ) =  ~ (--1) k ~, eml...mk(a, ~') (D.IO) 
k = 0 (rn 1 - . -mk)~T  ~ 
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where we have put 

~+I t 

e ( a ;  ~'a"; t) = ~ V(a,~_a:~_~; %a,~) ~-[  (1 - 8%%) (D.17) 
k=l k=l 

with % = a:o = a, % +1 = a', and ah + ~ = a". 
It is not difficult to verify that the proof leading to (D. 1 l) can be carried 

over to the problem at hand; we evaluate (D.17) to get 

t+l 

?(~; da"; t) = 7~ (-1).+~ 
k=l i l . . . i l c  

P~r..~(c~; a'a") (D.18) 

(the iz are positive integers different from zero), with 

P~r..i~(~; a'a") = 
0%1" "~k  - 1 )E~ - / c  - 1 L I = 1 

?~...,~-~(~, ~")e,~(~"~"; ~,~,,) 

(D.19) 

where 

P,(ala2 ; a3a4) = @i [ U'a2> <as] U'a4> 

and ao = a. 
The definition (D.20) is just that of the matrix elements of the operator 

~z with respect to the basis {]a)@'1}. 

(D.20) 

A P P E N D I X  E. G E N E R A T I N G  F U N C T I O N  OF THE 
T R A N S I T I O N  PROBABIL IT IES 

Introducing the power series F(z)  constructed from the PO-)'s as co- 
efficients, the definition (67) of the transition matrices gives 

oo z + l  

~= 0 k= i i I + -.. + iiz= I + i 

= 2 2 (_ , ) .1  ,,,,...,:, 
k:l Z:~--I il+'"+{~:Z+ i 

: s 

zF(~) = ~ PO)z* = 
"~=0 

Now, defining the generating function of the matrices P~, 

oo 

:(,) = ~ ?,z, 
1 = 1  

(E.2) 
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we obtain the following relation: 

zF(z) = f(z)[I  + f(z)]  -1 (E.3) 

It is not hard to make sure that the series F(z) and f (z)  have a nonzero 
radius of  convergence, since 

~+I k 

IIP(~-)II = sup IP(~'~";-)I ~< ~ ~ ~ IIP,,ll -< T 
g~' k=l ii+'"+~;~=~+ i /=i 

This last result is a consequence of 

Hed = supl<=l f ' ~ ' > ?  ~< 1 

and (n,) 
[{(xz ... x~) ~ N+~: x~ + ... +x~ = n}[ = (E.4) 

where ~1 + is the set of  nonzero positive integers. 
The formula (E.4) is proved by iteration with respect to n and application 

of  the combinatory algebra formula (6) 

i = /~  -I- ' 

A P P E N D I X  F. A L E M M A  

Ll~t o~ be a Hilbert space and {e~}~e~ an orthonormal basis of ~ .  Any 
unitary operator U such that 

t<edU2ej>l = I<e, lUej>? for any i , j ~  N (F.1) 

is diagonal in the basis {e~}. 
Proof. With some obvious notations, let us rewrite (F.1) in the form: 

I U,~l = I U,,l 2 (F .2)  

The unitarity of  operators U and U 2 gives, for all j ~ N, 

Y. I U,~l = ] and ~ I U~[ 2 = 1 (F.3) 

For  all j ~ N, these two relations imply that there exists an integer 
~(j )  e N such that  

l U l l  = 8,.=r (F .4)  

and, consequently, there exists, for all j ,  a complex number Aj of modulus 
one such that 

U2ej = A~e=u~ (F.5) 
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Since the operator U 2 is a one-to-one mapping, a is a permutation of N. 
Finally (F. 1) leads to 

I<e,I fe,>l = ~,,~c,, (F .6)  

and, consequently there exists, for all j, a complex number/zj of modulus one 
such that 

Ues =/~je=(j) (F.7) 

From (F.5) and (F.7) it follows that 

and the lemma is proved. 

APPENDIX  G. C O M M E N T S  ON THE MATRICES P(r r162 t) 

Let us denote by P~, the matrix defined by (57) with 3" (eigenvectors set 
of U0) as the set of indices for the rows and columns, and by/~z the matrix 

P,(~; c,'d') = (c~ I UZa)(c,'l U~c~ ") (G.1) 

where the rows and columns are respectively indexed by Y and 3 -2. 
Then, (D.18) defines a matrix P(t) by 

t + l  

P(t) = Z ( - 1 ) e + l  Z P'I""P'~ -lp'k (G.2) 
/c= i ii+ ...+ l~=t + I 

The power series F(z) with the P(t) 's  as coefficients is determinec~ by 

zF(z) = [I + f(z)l-lf(z) (G.3) 

wheref(z)  is defined in (E.2) and 

f(z) = ~ ff,z' (G.4) 
/ = 1  

The matrix P(t) is the coefficient of z t+~ in (G.3). 
The relation (60) will be independent of the off-diagonal elements of the 

density operator at time zero if and only if this series equals zero. 
This statement is equivalent to 

f(z) = 0 (6.5) 

that is to say, 

P ~ = 0  for I = 1 , 2  .... 

We can verify that this last relation is satisfied by some operators that 
do not commute with Uo. 
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In fact, if <=1Uta> : 0 for all l and all c~, the Hamilton-Cayley theorem 
shows that the determinant of U equals zero; consequently, there does not 
exist any unitary operator satisfying (G.5). 

The unitary operators compatible with (G.5) are, therefore, such that 
there exist lo and % such that <aolU~oao> # 0; in that case UZo is diagonal 
with respect to the basis of the eigenvectors of Uo and ]<a] U~0a) l = 1 for all a. 

The operators commuting with Uo fulfill this condition, but there are also 
some others. 

A P P E N D I X  H. T W O  T H E O R E M S  

Theorem 1. Let (ae) be a bounded sequence of complex numbers such 
that 

1 N 

lim| ~ e =~lae 

exists and equals 6; then 

1 N 

lirn ~ k~=l ake 2i'~exm 

exists for all real x, and equals tiW~X(sin ~x)/zrx (~ for x = 0). 

For x = 0 the theorem is trivial. When x # 0 it is sufficient to show that 

lim 1 ~ _ ~)e2~,~x m N-. = N- (ae = 0 (H. 1) 
k = l  

since 
1 N lim k~= l e2i~kx m = ei~X sin 7rx (H.2) 

N ~  oo N = 7"rX 

Therefore the theorem will be proved at the same time as the following 
lemma. 

Lemma. Let (bk) be a bounded sequence of complex numbers such that 

1 N 
lim -N~k"~-- 1 be = 0 

N-"~ QO = 

Then, for all real x 

1 N 
lira k~f= 1 bke 2~k':m = 0 

Proof We may clearly suppose that Ibm] ~< 1. By defining 
/c 

Sk = (l/k) ~ b, (H.3) 
l = l  

we have [Sk] ~< 1 and lime_.| S~ = 0 (by hypothesis). 
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Now, let us put 

~ ( x )  = bke2~l~ r = 7v kS~e2~.k~m(1 _ e2~=xm ) + SNe~,~ ~ 
= ~:=1 

Taking the absolute value, we obtain 

I  (x)l IS l Ixl kl&l 
/ c = l  

which gives 
.E 

With the sequence (Sk) converging to zero, the preceding bound shows 
that the function sequence (me) converges to zero, uniformly onto any com- 
pact set. 

Theorem 2. Let (a~) be a bounded sequence of complex numbers, x a 
positive real number, and (xk) an increasing (strictly) sequence of real 
numbers, equally distributed onto the interval [0, x]. 

If  

exists and equals ~, then 

lim 1 ~N 
N ~ ,  ~ tr = a/~ 

N 
lira 1 X? ,, eZ ,~  

exists and equals ~e~(sin  ~rx)/crx. 
Let us recall that (7) a sequence (x~) is equally distributed onto the 

interval [0, x] if, and only if, for any Riemann-integrable function f,  the 
following relation is satisfied: 

limo ~ 1  f (xk)  = f ( y ) x  (H.4) 

In particular, we have 

lira ~=~ eZi,~x z = e,nX sin ~rx 

To prove the theorem, it is sufficient to show that the following lemma is true. 

Lemma. Let (b~) be a bounded sequence of complex numbers such that 

l i r a =  S" b ~ = O  
ie-~ /V~'~ I 
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Then we have 

1 
lim k~= l b~e 2~x~ = 0 

N~oo N = 

where (xk) stands for the equally distributed sequence introduced in the 
theorem. 

Proof.  We take Ib~l < 1. Introduce the sequence Sk defined by (H.3) and 
put 

1 z~ 

which can be written 

1 n -1  kSk(  e2`€ _ e 2''~*~+~) a~ = SNe2~=* N + N k~=l 

The modulus of ~u is bounded by 

2rr N-1 
I~NI < l&l + ~ .=~1 k l & l ( x ~ + l  - x~) 

But, for all E > 0, there exists an integer No such that I&l -< ~ for all k 1> No. 
Consequently, for any N t> No, we have the following bound: 

~rx 2~r~ N~I 
[,~N[ < E + ~ No(No + 1) + ~ d~'=l k(x~+l  - xk) 

Moreover, it is clear that 

1 n 1 n 1 n 

and, from the basic property (H.4) of the equally distributed sequences 

lira sup 1 ~ k(x~+l  - xk) <<. 
x 

~r--, | -IV 2 k = l  

Thus, N can be chosen large enough to ensure that faN] will be as small 
as we wish; this completes the proof. 

Remark .  Theorem 2 remains valid if the sequence (xk) is replaced by a 
family of sequences, indexed by N, strictly increasing, contained in [0, x], and 
asymptotically equally distributed over [0, x] when N goes to infinity. 

More precisely, if (x~(N))~ = 1...~v is such a family of  sequences, for all 
and/3 such that 0 ~< c~ </3 ~< x we have 

lim v~B(N) = /3 - ~ 
N--, ,~ N x 

where 
~B(N) = l{k: 1 <~ k < N,  x~ (N)  e [a,/31}1 
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